

超低高度衛星の利用に向けたワークショップ(第5回)

2020/01/24

「つばめ」における 大気抵抗補正係数推定結果

JAXA 追跡ネットワーク技術センター 坂本拓史

背景と目的

- 地球観測衛星は、軌道制御によって所定の軌道を維持する必要がある
- ・ 超低高度衛星は大気抵抗が大きい(目的の軌道からの逸脱がはやい)ため、
 イオンエンジン等を用いて継続的に軌道を維持する必要がある

※ 高度200 km付近の大気密度は、高度700 kmの1000倍以上

・ 超低高度衛星を、所定の軌道に精度良く維持するためには、大気抵抗(大気密度)を正確に予測することが重要

• 現状、超低高度域(300 km以下)の大気密度実測値は十分なデータがない

本ミッションでは、超低高度衛星の実用化のために 超低高度域の大気密度の高度分布、時間変動を計測する

軌道決定による大気密度の計測

オンボードGPS測位信号データおよび姿勢角 データを使用した高精度軌道決定によって、 実際の大気密度 $\rho_{observation}$ と既存の大気密 度モデル値 ρ_{model} の比率を推定

大気抵抗補正係数 $\eta = \frac{\rho_{observation}}{\rho_{model}}$

JAXA JAXA Downlink

ηの推定精度要求と推定間隔

精度要求:ηを誤差10%以下で推定

推定間隔:高度100m每

※平均高度低下率が100m/rev以上の領域では軌道1周回毎

「つばめ」の高精度軌道決定

GPS受信機とアンテナ

- 1周波型GPS受信機(L1帯)
- GPSアンテナ2基(+Z面および-Z面)

「つばめ」の高精度軌道決定

「つばめ」の高精度軌道決定

観測モデル

項目	設定値
基本観測量	GRAPHIC (GRoup And Phase Ionospheric Correction)
GPS衛星軌道暦・ク ロック	MADOCA Rapid (MGR) または IGS Final
「つばめ」姿勢角 データ	オンボード推定値
GPS衛星アンテナ位 相中心オフセット	IGS14
送信機 P1C1DCB	CODE推定值
地球回転パラメータ	IGS Rapid または IGS Final

力学モデル

項目	設定値
地球重力モデル (次数, 位数)	EGM2008 高度200 km以上:70次 高度200 km未満:120次
潮汐モデル	固体潮汐、海洋潮汐、極潮汐
他天体重力モデル	太陽、月、木星、金星
大気密度モデル	NRLMSISE-00
大気抵抗係数および 衛星断面積	両者の積(<i>CDS</i>)を,高度50 km毎、迎 角、横滑り角各1 deg毎にモデル化
太陽輻射圧	スケールファクタを推定
大気抵抗補正係数	軌道決定アーク中一定値を推定
相対論効果	考慮
経験的加速度	対気速度ベクトルの垂直方向成分(2 軸)について10分間隔で推定

$$\boldsymbol{a} = -\frac{1}{2}\rho_{model}(1+\rho_1)v^2\frac{C_DS}{m}\boldsymbol{e}_{\boldsymbol{v}}$$

ρ_{model}:大気密度モデル値
 ρ₁:補正係数(推定パラメータ)
 ν:対気速度
 C_D:抗力係数
 S:衛星断面積
 m:衛星質量
 e_n:対気速度方向単位ベクトル

$$1 + \rho_1 = \eta = \frac{\rho_{observation}}{\rho_{model}}$$

- 軌道決定において、衛星位置速度等と同時にρ₁を推定 (ρ₁は軌道決定アーク中一定値として推定)
- 抗力係数と衛星断面積は既知の値として扱う

⇒ 抗力係数と衛星断面積のモデル誤差は、 ρ_1 に吸収されてしまう ⇒ 地上での風洞試験や数値計算等により、極力精密にモデル化 (両者の積($C_D S$)を,高度50 km毎,迎角,横滑り角各1 deg毎にモデル化)

軌道長半径の変化率からηの推定精度を評価

- Step.1 大気抵抗補正係数を推定した軌道決定期間の2倍の軌道決定期間で軌 道決定を行う
- Step.2 両者の平均軌道長半径変化率の差異(平均a-dot誤差率)を算出し、 大気抵抗補正係数 η の推定精度とする

$\eta = \frac{\rho_{observation}}{\rho_{model}}$

ηの推定精度と平均a-dot誤差率の関係

疑似データ解析により、大気抵抗補正係数の推定精度(真値と推定結果の比較)と平均a-dot誤差率の関係を評価

比例定数1の線形関係があることを確認

平均a-dot誤差率と大気抵抗補正係数の相関(疑似データ解析結果)

 η 誤差率と平均adot誤差率の関係(LEOAR、 $\sigma = 2.3E-6$)

「つばめ」の大気抵抗補正係数推定

- 高精度軌道決定により、超低高度域の大気抵抗補正係数を誤差10%以下の 精度で推定することに成功
- 推定された超低高度域の大気密度は、NRLMSISE-00モデル値よりも小さく、 平均的には約68%であった
- 一方で、磁気嵐発生時の大気密度の上昇幅は、NRLMSISE-00よりも実際の 観測値の方が大きく、NRLMSISE-00は地磁気の寄与を正確にモデル化でき ていないことが示唆された
- 得られた大気密度データは、超低高度衛星の実用化に活用する他、共同研究等の中で更に詳細に分析、利用される予定