超低高度衛星の利用に向けたワークショップ(第4回)

超低軌道環境における 中性ガス衝突誘起材料劣化現象メカニズムの解析

日時:2018年9月18日 場所:ソラシティ御茶ノ水カンファレンスセンター

PI: 横田 久美子、CI: 田川 雅人 (神戸大学)

LEO/SLEO Space Environment

Courtesy by K. K. de Groh, NASA-GRC

AO is the predominant species in LEO (~200-650 km)
 AO flux at ISS altitudes: ~1.0 x 10¹⁴ atoms/cm²/sec
 Average impact energy at ram velocities: 5 eV

Microgravity: Thermal cycling: Pressure: Solar radiation: Neutral gas:

10⁻⁶ G -150 ° C - 200 ° C 10⁻⁵ - 10⁻⁸ Torr UV, VUV, X-rays Atomic oxygen

Also, radiation, ions, electrons, debris are important factors in LEO space environment.

LEO AO as seen by the shuttle

Neutral Gas densities in SLEO

Altitude profile of densities of atmospheric components calculated by MSIS-E90 atmospheric model. Parameters for this calculation are: Date: 2012 Feb. 28 (relatively low solar activity period), Latitude: 30°, Longitude: 135°, Local time: 12H.

-Density of AO at 180 km are more than 2-3 orders higher than that in 450 km

原子状酸素が宇宙機用材料に大きな影響を与えること が知られているが、その原因や劣化メカニズムには未 だ不明な点が多い。

<u>地上実験</u>: 宇宙環境を正確に再現できない (衝突エネルギー、粒子種類等)

<u>軌道上実験</u>:曝露パラメータの調整が困難 (ISS軌道に限定)

そのため、スペースシャトルの初飛行以降30年以上が 経過しても定量的な理解ができていない。 ISS以外の軌道環境で材料試験ができれば、極めて有 益な情報が得られる。

■共同研究目的:

SLATSデータを既存の材料実験データや知見と比較し、超低軌道で組成の50%程度を占めるN₂(AO以外)の衝突がポリイミド/フッ素系高分子材料劣化に与える影響を解析的に評価する。

■研究ターゲット:

これまで神戸大学レーザーデトネーション複合超熱原 子ビーム装置を用いた地上研究で予測された超低軌道 宇宙環境でのポリイミド/フッ素系高分子材料劣化特 性の軌道上実証を行う(世界初)。

各高度においてSLATS/AOFSにより測定されるポリイミド 劣化速度と高層大気モデルによる原子状酸素密度からポリ イミド反応率の高度依存を計算し、N₂分子同時衝突による 劣化増速効果を検証する。

SLATS/MDMにより計測されるFEP(25ミクロン)破断時期からN₂分子フッ素系高分子劣化原因説の検証行う。

KOBE Univ.

原子状酸素地上試験装置の特性 (実宇宙環境とは異なる)

- ・原子状酸素平均並進エネルギーは同じ(5eV)
- ・原子状酸素エネルギー分布幅が大(>5eV)
- ・原子状酸素100%ではない
 - →高エネルギー未解離酸素分子を含む(30-50%)
 →低エネルギー未解離酸素分子も含む
 →高エネルギーイオン、EUV等も含む
- ・パルス動作

→このため、ポリイミド劣化量を基準とした場合、 フッ素系高分子の地上試験結果は軌道上試験結果 と不整合が生じる(と信じられている)。

原子状酸素のフルーエンスの求め方 ?

Polyimideの原子状酸素との反応率が基準

Thermal resistance
 (-270 °C- +400 °C)
 Resistance to radiation
 Resistance to VUV

AO monitor material

Reaction efficiency: <u>3.0 x 10⁻²⁴ cm³/atom</u>

出所:STS-8 フライトデータ(1983)を基にPolyimideの反応率が決められた?

Objective: To improve the accuracy of ground-based durability testing

- Obtain ground-laboratory to in-space AO correlation data based on MISSE 2 PEACE data ightarrow
 - \Rightarrow Determine PEACE polymers AO Ey in a plasma asher relative to Kapton H

Asher & MISSE AO Ey: correlation btw erosion rates in-space vs. test-facility \Rightarrow

	MISSE Serial #	Material	Abbrev.	Space MISSE 2 Ey (cm ³ /atom)	Ground Asher Ey (cm³/atom)	Asher to In-Space Ey Ratio
Example of Ground-to-space correlation data (work in progress)	2-E5-6	Acrylonitrile butadiene styrene	ABS	1.09E-24	5.81E-24	5.3
	2-E5-12	Polyoxymethylene; acetal; polyformaldehyde	POM (Delrin)	9.14E-24	3.15E-24	0.3
	2-E5-13	Polyacrylonitrile	PAN	1.41E-24	4.48E-24	3.2
	2-E5-15	Polystyrene	PS	3.74E-24	4.47E-24	1.2
	2-E5-25	Graphite	PG	4.15E-25	7.77E-25	1.9
	2-E5-33	Polyimide (PMDA)	Kapton H	3.00E-24	3.00E-24	1.0
	2-E5-36	Polycarbonate	PC	4.29E-24	3.15E-24	0.7
	2-E5-37	Polyetheretherkeytone	PEEK	2.99E-24	5.30E-24	1.8
	2-E5-38	Polyethylene terephthalate	PET (Mylar)	3.01E-24	5.91E-24	2.0
	2-E5-39	Chlorotrifluoroethylene	CTFE (Kel-f)	8.31E-25	2.63E-24	3.2
	2-E5-41	Tetrafluorethylene-ethylene copolymer	ETFE (Tefzel)	9.61E-25	2.09E-24	2.2
	2-E5-42	Fluorinated ethylene propylene	FEP	2.00E-25	2.34E-24	11.7
	2-E5-43	Polytetrafluoroethylene	PTFE	1.42E-25	2.02E-24	14.3
	2-E5-44	Perfluoroalkoxy copolymer resin	PFA	1.73E-25	2.15E-24	12.4
	2-E5-45	Amorphous Fluoropolymer	AF	1.98E-25	1.89E-24	9.5
	2-E5-46	Polyvinylidene fluoride	PVDF (Ky	1.29E-24	1.55E-24	ASA GRC)

原子状酸素地上試験装置の特性 (実宇宙環境とは異なる)

- ・原子状酸素平均並進エネルギーは同じ(5eV)
- ・原子状酸素エネルギー分布幅が大(>5eV)
- ・原子状酸素100%ではない
 - →高エネルギー未解離酸素分子を含む(30-50%) →低エネルギー未解離酸素分子も含む →高エネルギーイオン、EUV等も含む
- ・パルス動作

→ 超低軌道に50%の割合で存在する高エネルギー
 N₂分子も影響する可能性有り

■テーマ① 各高度においてSLATS/AOFSにより測定されるポリイミド 劣化速度と高層大気モデルによる原子状酸素密度からポリ イミド反応率の高度依存を計算し、N₂分子同時衝突による 劣化増速効果を検証する。

背景

Figure 4-31. Erosion yield of Kapton-H films in different exposure conditions (Kita, 2017) AO: 2.7eV, Ar:9.7 eV, Fraction of Ar in AO+Ar condition is 58%

■テーマ① 各高度においてSLATS/AOFSにより測定されるポリイミド 劣化速度と高層大気モデルによる原子状酸素密度からポリ イミド反応率の高度依存を計算し、N₂分子同時衝突による 劣化増速効果を検証する。

地上実験での結果

- ・ポリイミドの劣化は原子状酸素により生じる
- Arビームでは劣化しない
- ・原子状酸素とArビームを同時照射すると増速劣化する

解決すべき課題

→超低軌道ではポリイミドはN₂同時衝突により増速劣化 するのではないか? (仮説)

■FY2018の研究進捗 AOFS関連の解析を優先。

・Ar(N₂)によるポリイミド質量減少の加速効果が実験で確認されている

AOFSデータダウンロードとポリイミド反応率の計算方法
 →大気抵抗データのダウンロードも必要!
 →現在、ダウンロード申請中

・ポリイミドのAOに対するE_y(3.00E-24 cm³/atom)の出所調査
 →調査中。1987年には文献に現れている。
 質量減少:STS-5, -8の実験結果
 AOフルーエンス:MSIS計算値

AOフルーエンスの軌道上実測値、MSIS予測値の比較
 →調査中。両者は比較的よく一致する場合と
 MSIS予測値が大きい場合が混在。
 → AOFSも大きいケース!

AOフルーエンス実測値・MSIS予測値の比較

	年	Platform	AOフルーエンス (AO/cm²)			
コッション			MSIS予測值	軌道上実測値	MSIS/実測値	
EOIM-3	1992	STS-46	2.1E+20	2.4E+20(Kapton)	0.9	
MISSE-2	2001-2005	ISS	1.2E+22	8.4E+21(Kapton)	1.5	
MEDET	2008-2009	ISS	2.3E+21	1.7E+21(Kapton)	1.4	
JEM/MPAC&SEED	2010	ISS	1.4E+21	5.9E+20(Vespel)	2.4	
AOFS	2018 Jan-Mar	SLATS	下図参照 (水色)	下図参照 (青, PI-QCM)	1.5 – 2.2	

> N₂分子による加速劣化 → 反応率の高度依存

■今後の予定 AOFS関連の解析を優先。

- ・AOFSデータと軌道環境データをダウンロードし、 ポリイミド反応率の環境依存性を解析
- ポリイミドのAOに対する反応効率(3.00E-24 cm³/atom)
 へのN₂衝突加速効果と軌道上AOデータの再評価
- ・MDM画像評価と窒素分子密度データとの相関の確認 地上実験結果との比較
- ・次期超低軌道ミッションではMSISから独立した 分子密度評価方法が必要。 電離真空計?

End of Presentation