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The response patterns of clouds and precipitation to 4°C warming
aqua—planet climate model experiments

CHANGE IN CLOUD RADIATIVE EFFECTS
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CHANGE IN PRECIPITATION

MPI-ESM-LR MIROC5 FGOALS-G2 IPSL-CM5A-LR

Wide variation. The response patterns of clouds and precipitation to warming vary dramatically depending
on the climate model, evenin the simplest model configuration. Shown are changes in the radiative effects of
clouds and in precipitation accompanying a uniform warming (4°C) predicted by four models from Phase 5 of

the Coupled Model Intercomparison Project (CMIP5) for a water planet with prescribed surface temperatures. What Are Climate Models Missing?
Bjorn Stevens and Sandrine Bony
Science 340, 1053 (2013);
DOI: 10.1126/science.1237554



Uncertainties in Formulating Cloud and Associated Processes

UNCERTAINTIES IN FORMULATING CLOUD AND ASSOCIATED POCESSES ACTIVATE
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Convective Parameterization <:| Aerosol-Cloud-Meteorology Interactions
v' How to trigger? How to heat?

»; Spread of CCN, Hydrometeors, Microphysics
Cloud Area, Height, (Optical) Depth.. \“"‘2




Advances in Precipitation Science with TRMM/GPM

Characteristics of precipitation systems and their environments
. . . ()
— Extreme precipitation @y@
— Mesoscale Convective Systems vs Scattered Convection @@ ZZ@@
Quantification of convective latent heating ?i
Detection of precipitation microphysics
— Liquid/Solid phase
— Flags for Heavy Ice Precipitation, Graupel Hail

mprovement of NWF with precipitation assimilations

High spatial-temporal resolution precipitation maps

Field experiments for validations



Mesoscale Convective System (MCS)
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of Mesoscale Convective Systems, by
identifying convective precipitation and

stratiform precipitaion, as well as Doppler
velocity observations.
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Diabatic Heating Associated with MCS
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Latent Heating (Schumacher et al. 2004) > Radiative Heating (Webster and Stephens,1980)
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It is essential to know the precipitation properties (conv/strat) and cloud spread in order to diagnose the 6. D

diabatic heating associated with MCS

Nondimensional heating rate



<— — 1000 km —_——

Different Regimes of Overturning
(Cumuloninbus vs MCS)

a) Cumulus Field c) Coherent Structure in Cumulus Field
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Precipitation Events observed from TRMM PR / GPM DPR

£S5 0 B —t . The appearance of space-borne precipitation radars on TRMM in 1997
TN = and followed by GPM satellite in 2014 has enabled us to observe
hundreds of millions of precipitation events in 3D from space

Organized Convection (MCS) Thunderstorm Convecction
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Atmospheric Moisture and Precipitation
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Left: Bretherton et al. 2004 showed a rapid pick up of
precipitation with increasing column relative humidity. e Comeavenes - e
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- Emphasized the significant increase of MCS with column Ahmed and Schumacher (2015) with TRMM PR 9. AORI
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Degree of Aggregation (%)

Precipitation Dependence on CWV and Degree of Aggregation
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Ze-Height PDFs for Extreme Rainfall vs Extreme Convection

2001.9-2012.8 (Hamada et al. 2015, Nature Comm)
35N-35S Land, 99.9% in each 2.5deg grid 85 million events
Olnv Differences in Env. Conditions
(Ext-Rainfall) — (Ext-Convection)
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* Heaviest rainfalls are not linked to Tallest convections
* Heaviest rainfalls contain more warm-type rain, in more stable and moister environments,
associated with more organized systems (Hamada et al. 2015; Hamada and Takayabu, 2018)




GPM DPR observed the Heavy Rainfall in July 2018

9:38JST, July 7, 2018

Precipitation tops beyond 10km
are scarcely observed
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Large—scale effects with scattered convection vs MCS

Unstable Atmosphere Deep Moist Atmosphere

a) Cumulus Field c) Coherent Structure in Cumulus Field

Cloud coverage, Cloud microphysics

— Radiative Heating

Coherent =
Structure

b) Turbulent Cumulus d) Propagating Coherent Structure . .
Convective overturning

- Temperature, Moisture, and
Momentum Adjustment
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Cloud type organization

— Latent Heating
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Global Energy Budget (Stephens et al. 2012)

Incoming TOA imbalance 0.61£0.4
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Convective Heating and Radiative Heating
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(Li et al. 2015) Model Simulation

From Precipitation Science to Cloud-Precipitation Science

- Extend quantification of Latent Heating to total diabatic heating
(LH+Radiative H) with breakdowns into individual cloud-precip
systems

~ Stratiform precipitation with warrfront

%&M‘k L

EarthCARE and ACCP QU



Summary

We made a big advance in precipitation science with 3D
precipitation observations from space.

As an example, we have emphasized the differences in
scattered precipitation and MCS, linked to unstable
atmosphere and deep moist atmosphere, respectively.

The differences in these two regimes extend to various large-
scale effects.

In order to represent effects of cloud-precipitation systems in
climate variability, process studies with breakdowns to
individual cloud systems will be essential.

EarthCARE and ACCP observations are awaited.



